

    
      
          
            
  
WellRESTed

WellRESTed is a library for creating RESTful APIs and websites in PHP that provides abstraction for HTTP messages, a powerful handler and middleware system, and a flexible router.


Features


PSR-7 HTTP Messages

Request and response messages are built to the interfaces standardized by PSR-7 [https://www.php-fig.org/psr/psr-7/] making it easy to share code and use components from other libraries and frameworks.

The message abstractions facilitate working with message headers, status codes, variables extracted from the path, message bodies, and all the other aspects of requests and responses.



PSR-15 Handler Interfaces

WellRESTed can use handlers and middleware using the interfaces defined by the PSR-15 [https://www.php-fig.org/psr/psr-15/] standard.



Router

The router allows you to define your endpoints using URI Templates like /foo/{bar}/{baz} that match patterns of paths and provide captured variables. You can also match exact paths for extra speed or regular expressions for extra flexibility.

WellRESTed’s router automates responding to OPTIONS requests for each endpoint based on the methods you assign. 405 Method Not Allowed responses come free of charge as well for any methods you have not implemented on a given endpoint.



Middleware

The middleware system allows you to build your Web service out of discrete, modular pieces. These pieces can be run in sequences where each has an opportunity to work with the request before handing it off to the next. For example, an authenticator can validate a request and forward it to a cache; the cache can check for a stored representation and forward to another middleware if no cached representation is found, etc. All of this happens without any one middleware needing to know anything about where it is in the chain or which middleware comes before or after.



Lazy Loading

Handlers and middleware can be registered using factory functions so that they are only instantiated if needed. This way, a Web service with hundreds of handlers and middleware only creates instances required for the current request-response cycle.



Extensible

Most classes are coded to interfaces to allow you to provide your own implementations and use them in place of the built-in classes. For example, if your Web service needs to be able to dispatch middleware that implements a third-party interface, you can provide your own custom DispatcherInterface implementation.




Example

Here’s a customary “Hello, world!” example. This site will respond to requests for GET /hello with “Hello, world!” and provide custom responses for other paths (e.g., GET /hello/Molly will respond “Hello, Molly!”).

The site will also provide an X-example: hello world using dedicated middleware, just to illustrate how middleware propagates.

<?php

use Psr\Http\Message\ResponseInterface;
use Psr\Http\Message\ServerRequestInterface;
use Psr\Http\Server\MiddlewareInterface;
use Psr\Http\Server\RequestHandlerInterface;
use WellRESTed\Message\Response;
use WellRESTed\Message\Stream;
use WellRESTed\Server;

require_once 'vendor/autoload.php';

// Create a handler that will construct and return a response. We'll
// register this handler with a server and router below.
class HelloHandler implements RequestHandlerInterface
{
    public function handle(ServerRequestInterface $request): ResponseInterface
    {
        // Check for a "name" attribute which may have been provided as a
        // path variable. Use "world" as a default.
        $name = $request->getAttribute("name", "world");

        // Set the response body to the greeting and the status code to 200 OK.
        $response = (new Response(200))
            ->withHeader("Content-type", "text/plain")
            ->withBody(new Stream("Hello, $name!"));

        // Return the response.
        return $response;
    }
}

// Create middleware that will add a custom header to every response.
class CustomerHeaderMiddleware implements MiddlewareInterface
{
    public function process(
        ServerRequestInterface $request,
        RequestHandlerInterface $handler
    ): ResponseInterface {

        // Delegate to the next handler in the chain to obtain a response.
        $response = $handler->handle($request);

        // Add the header.
        $response = $response->withHeader("X-example", "hello world");

        // Return the altered response.
        return $response;
    }
}

// Create a server
$server = new Server();

// Add the header-adding middleware to the server first so that it will
// forward requests on to the router.
$server->add(new CustomerHeaderMiddleware());

// Create a router to map methods and endpoints to handlers.
$router = $server->createRouter();

$handler = new HelloHandler();
// Register a route to the handler without a variable in the path.
$router->register('GET', '/hello', $handler);
// Register a route that reads a "name" from the path.
// This will make the "name" request attribute available to the handler.
$router->register('GET', '/hello/{name}', $handler);
$server->add($router);

// Read the request from the client, dispatch, and output.
$server->respond();







Contents



	Overview
	Installation

	Requirements

	License





	Getting Started
	Hello, World!

	Routing by Path

	Reading Path Variables

	Middleware





	Messages and PSR-7
	Requests
	Headers

	Body
	Parsed Body

	Body Stream





	Parameters

	Attributes





	Responses
	Status

	Headers

	Body
	Stream

	NullStream













	Handlers and Middleware
	Defining Handlers and Middleware
	PSR-15 Interfaces

	Legacy Middleware Interface

	Callables





	Using Handlers and Middleware
	Factory Functions

	Instance

	Fully Qualified Class Name (FQCN)

	Array









	Router
	Basic Usage

	Paths
	Static Routes

	Prefix Routes

	Template Routes

	Regex Routes

	Route Priority
	Static vs. Prefix

	Prefix vs. Prefix

	Prefix vs. Pattern

	Pattern vs. Pattern









	Methods
	Registering by Method

	Registering by Method List

	Registering by Wildcard

	HEAD

	OPTIONS, 405 Responses, and Allow Headers





	Error Responses

	Router-specific Middleware

	Nested Routers





	URI Templates
	Reading Variables
	Basic Usage

	Multiple Variables

	Arrays





	Matching Characters
	Unreserved Characters

	Reserved Characters









	URI Templates (Advanced)
	Path Components

	Dot Prefixes

	Multiple-variable Expressions





	Extending and Customizing
	Custom Handlers and Middleware
	Wrapping

	Custom Dispatcher









	Dependency Injection

	Additional Components

	Web Server Configuration
	Nginx

	Apache













          

      

      

    

  

    
      
          
            
  
Overview


Installation

The recommended method for installing WellRESTed is to use Composer [https://getcomposer.org/]. Add an entry for WellRESTed in your project’s composer.json file.

 {
   "require": {
      "wellrested/wellrested": "^5"
   }
}







Requirements


	PHP 7.3






License

Licensed using the MIT license [http://opensource.org/licenses/MIT].


The MIT License (MIT)

Copyright (c) 2021 PJ Dietz

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.








          

      

      

    

  

    
      
          
            
  
Getting Started

This page provides a brief introduction to WellRESTed. We’ll take a tour of some of the features of WellRESTed without getting into too much depth.

To start, we’ll make a “Hello, world!” to demonstrate the concepts of handlers and routing and show how to read variables from the request path.


Hello, World!

Let’s start with a very basic “Hello, world!” Here, we will create a server. A WellRESTed\Server reads the incoming request from the client, dispatches a handler, and transmits a response back to the client.

Our handler will create and return a response with the status code set to 200 and the body set to “Hello, world!”.

Example 1: Simple “Hello, world!”

<?php

use Psr\Http\Server\RequestHandlerInterface;
use WellRESTed\Message\Response;
use WellRESTed\Message\Stream;
use WellRESTed\Server;

require_once 'vendor/autoload.php';

// Define a handler implementing the PSR-15 RequestHandlerInterface interface.
class HelloHandler implements RequestHandlerInterface
{
    public function handle(ServerRequestInterface $request): ResponseInterface
    {
        $response = (new Response(200))
            ->withHeader('Content-type', 'text/plain')
            ->withBody(new Stream('Hello, world!'));
        return $response;
    }
}

// Create a new server.
$server = new Server();

// Add this handler to the server.
$server->add(new HelloHandler());

// Read the request sent to the server and use it to output a response.
$server->respond();






Note

The handler in this example provides a Stream as the body instead of a string. This is a feature or PSR-7 where HTTP message bodies are always represented by streams. This allows you to work with very large bodies without having to store the entire contents in memory.

WellRESTed provides Stream and NullStream, but you can use any implementation of Psr\Http\Message\StreamInterface.


  
    

    Messages and PSR-7
    

    
 
  

    
      
          
            
  
Messages and PSR-7

WellRESTed uses the PSR-7 [http://www.php-fig.org/psr/psr-7/] interfaces for HTTP messages. This section provides an introduction to working with these interfaces and the implementations provided with WellRESTed. For more information, please read about PSR-7 [http://www.php-fig.org/psr/psr-7/].


Requests

The $request variable passed to handlers and middleware represents the request message sent by the client. You can inspect this variable to read information such as the request path, method, query, headers, and body.

Let’s start with a very simple GET request to the path /cats/?color=orange.

GET /cats/?color=orange HTTP/1.1
Host: example.com
Cache-control: no-cache





You can read information from the request in your handler like this:

class MyHandler implements RequestHandlerInterface
{
    public function handle(ServerRequestInterface $request): ResponseInterface
    {
        $path = $request->getRequestTarget();
        // "/cats/?color=orange"

        $method = $request->getMethod();
        // "GET"

        $query = $request->getQueryParams();
        /*
            Array
            (
                [color] => orange
            )
        */
    }
}





This example shows that you can use:



	getRequestTarget() to read the path and query string for the request


	getMethod() to read the HTTP verb (e.g., GET, POST, OPTIONS, DELETE)


	getQueryParams() to read the query as an associative array








Headers

The request above also included a Cache-control: no-cache header. You can read this header a number of ways. The simplest way is with the getHeaderLine($name) method.

Call getHeaderLine($name) and pass the case-insensitive name of a header. The method will return the value for the header, or an empty string if the header is not present.

class MyHandler implements RequestHandlerInterface
{
    public function handle(ServerRequestInterface $request): ResponseInterface
    {
        // This message contains a "Cache-control: no-cache" header.
        $cacheControl = $request->getHeaderLine("cache-control");
        // "no-cache"

        // This message does not contain any authorization headers.
        $authorization = $request->getHeaderLine("authorization");
        // ""
    }
}






Note

All methods relating to headers treat header field names case insensitively.


  
    

    Handlers and Middleware
    

    
 
  

    
      
          
            
  
Handlers and Middleware

WellRESTed allows you to define and use your handlers and middleware in a number of ways.


Defining Handlers and Middleware


PSR-15 Interfaces

The preferred method is to use the interfaces standardized by PSR-15 [https://www.php-fig.org/psr/psr-15/]. This standard includes two interfaces, Psr\Http\Server\RequestHandlerInterface and Psr\Http\Server\MiddlewareInterface.

Use RequestHandlerInterface for individual components that generate and return responses.

class HelloHandler implements RequestHandlerInterface
{
    public function handle(ServerRequestInterface $request): ResponseInterface
    {
        // Check for a "name" attribute which may have been provided as a
        // path variable. Use "world" as a default.
        $name = $request->getAttribute("name", "world");

        // Set the response body to the greeting and the status code to 200 OK.
        $response = (new Response(200))
            ->withHeader("Content-type", "text/plain")
            ->withBody(new Stream("Hello, $name!"));

        // Return the response.
        return $response;
    }
}





Use MiddlewareInterface for classes that interact with other middleware and handlers. For example, you may have middleware that attempts to retrieve a cached response and delegates to other handlers on a cache miss.

class CacheMiddleware implements MiddlewareInterface
{
    public function process(
        ServerRequestInterface $request,
        RequestHandlerInterface $handler
    ): ResponseInterface
    {

        // Inspect the request to see if there is a representation on hand.
        $representation = $this->getCachedRepresentation($request);
        if ($representation !== null) {
            // There is already a cached representation.
            // Return it without delegating to the next handler.
            return (new Response())
                ->withStatus(200)
                ->withBody($representation);
        }

        // No representation exists. Delegate to the next handler.
        $response = $handler->handle($request);

        // Attempt to store the response to the cache.
        $this->storeRepresentationToCache($response);

        return $response
    }

    private function getCachedRepresentation(ServerRequestInterface $request)
    {
        // Look for a cached representation. Return null if not found.
        // ...
    }

    private function storeRepresentationToCache(ResponseInterface $response)
    {
        // Ensure the response contains a success code, a valid body,
        // headers that allow caching, etc. and store the representation.
        // ...
    }
}







Legacy Middleware Interface

Prior to PSR-15, WellRESTed’s recommended handler interface was WellRESTed\MiddlewareInterface. This interface is still supported for backwards compatibility.

This interface serves for both handlers and middleware. It differs from the Psr\Http\Server\MiddlewareInterface in that is expects an incoming $response parameter which you may use to generate the returned response. It also expected a $next parameter which is a callable with this signature:

function next($request, $response): ResponseInterface





Call $next and pass $request and $response to forward the request to the next handler. $next will return the response from the handler. Here’s the cache example above as a WellRESTed\MiddlewareInterface.

class CacheMiddleware implements WellRESTed\MiddlewareInterface
{
    public function __invoke(
        ServerRequestInterface $request,
        ResponseInterface $response,
        $next
    ) {

        // Inspect the request to see if there is a representation on hand.
        $representation = $this->getCachedRepresentation($request);
        if ($representation !== null) {
            // There is already a cached representation.
            // Return it without delegating to the next handler.
            return $response
                ->withStatus(200)
                ->withBody($representation);
        }

        // No representation exists. Delegate to the next handler.
        $response = $next($request, $response);

        // Attempt to store the response to the cache.
        $this->storeRepresentationToCache($response);

        return $response
    }

    private function getCachedRepresentation(ServerRequestInterface $request)
    {
        // Look for a cached representation. Return null if not found.
        // ...
    }

    private function storeRepresentationToCache(ResponseInterface $response)
    {
        // Ensure the response contains a success code, a valid body,
        // headers that allow caching, etc. and store the representation.
        // ...
    }
}







Callables

You may also use a callable similar to the legacy WellRESTed\MiddlewareInterface. The signature of the callable matches the signature of WellRESTed\MiddlewareInterface::__invoke.

$handler = function ($request, $response, $next) {

    // Delegate to the next handler.
    $response = $next($request, $response);

    return $response
        ->withHeader("Content-type", "text/plain")
        ->withBody(new Stream("Hello, $name!"));
}








Using Handlers and Middleware

Methods that accept handlers and middleware (e.g., Server::add, Router::register) allow you to provide them in a number of ways. For example, you can provide an instance, a callable that returns an instance, or an array of middleware to use in sequence. The following examples will demonstrate all of the ways you can register handlers and middleware.


Factory Functions

The best method is to use a function that returns an instance of your handler. The main benefit of this approach is that no handlers are instantiated until they are needed.

$router->register("GET,PUT,DELETE", "/widgets/{id}",
    function () { return new App\WidgetHandler() }
);





If you’re using Pimple, a popular dependency injection container for PHP, you may have code that looks like this:

// Create a DI container.
$c = new Container();
// Store a function to the container that will create and return the handler.
$c['widgetHandler'] = $c->protect(function () use ($c) {
    return new App\WidgetHandler();
});

$router->register("GET,PUT,DELETE", "/widgets/{id}", $c['widgetHandler']);







Instance

WellRESTed also allows you to pass an instance of a handler directly. This may be useful for smaller handlers that don’t require many dependencies, although the factory function approach is better in most cases.

$widgetHandler = new App\WidgetHandler();

$router->register("GET,PUT,DELETE", "/widgets/{id}", $widgetHandler);






Warning

This is simple, but has a significant disadvantage over the other options because each middleware used this way will be loaded and instantiated, even if it’s not needed for a given request-response cycle. You may find this approach useful for testing, but avoid if for production code.


  
    

    Router
    

    
 
  

    
      
          
            
  
Router

A router is a type of middleware that organizes the components of a site by associating HTTP methods and paths with handlers and middleware. When the router receives a request, it examines the path components of the request’s URI, determines which “route” matches, and dispatches the associated handler. The dispatched handler is then responsible for reacting to the request and providing a response.


Basic Usage

Typically, you will want to use the WellRESTed\Server::createRouter method to create a Router.

$server = new WellRESTed\Server();
$router = $server->createRouter();





Suppose $catHandler is a handler that you want to dispatch whenever a client makes a GET request to the path /cats/. Use the register method map it to that path and method.

$router->register("GET", "/cats/", $catHandler);





The register method is fluent, so you can add multiple routes in either of these styles:

$router->register("GET", "/cats/", $catReader);
$router->register("POST", "/cats/", $catWriter);
$router->register("GET", "/cats/{id}", $catItemReader);
$router->register("PUT,DELETE", "/cats/{id}", $catItemWriter);





…Or…

$router
    ->register("GET", "/cats/", $catReader)
    ->register("POST", "/cats/", $catWriter)
    ->register("GET", "/cats/{id}", $catItemReader)
    ->register("PUT,DELETE", "/cats/{id}", $catItemWriter);







Paths

A router can map a handler to an exact path, or to a pattern of paths.


Static Routes

The simplest type of route is called a “static route”. It maps a handler to an exact path.

$router->register("GET", "/cats/", $catHandler);





This route will map a request to /cats/ and only /cats/. It will not match requests to /cats or /cats/molly.



Prefix Routes

The next simplest type of route is a “prefix route”. A prefix route matches requests by the beginning of the path.

To create a “prefix handler”, include * at the end of the path. For example, this route will match any request that begins with /cats/.

$router->register("GET", "/cats/*", $catHandler);







Template Routes

Template routes allow you to provide patterns for paths with one or more variables (sections surrounded by curly braces) that will be extracted.

For example, this template will match requests to /cats/12, /cats/molly, etc.,

$router->register("GET", "/cats/{cat}", $catHandler);





When the router dispatches a route matched by a template route, it provides the extracted variables as request attributes. To access a variable, call the request object’s getAttribute method and pass the variable’s name.

For a request to /cats/molly:

$name = $request->getAttribute("cat");
// "molly"





Template routes are very powerful, and this only scratches the surface. See URI Templates for a full explanation of the syntax supported.



Regex Routes

You can also use regular expressions to describe route paths.

$router->register("GET", "~cats/(?<name>[a-z]+)-(?<number>[0-9]+)~", $catHandler);





When using regular expression routes, the attributes will contain the captures from preg_match [https://php.net/manual/en/function.preg-match.php].

For a request to /cats/molly-90:

$vars = $request->getAttributes();
/*
Array
(
    [0] => cats/molly-12
    [name] => molly
    [1] => molly
    [number] => 12
    [2] => 12
)
*/







Route Priority

A router will often contain many routes, and sometimes more than one route will match for a given request. When the router looks for a matching route, it performs these checks in order.


	If there is a static route with exact match to path, dispatch it.


	If one prefix route matches the beginning of the path, dispatch it.


	If multiple prefix routes match, dispatch the longest matching prefix route.


	Inspect each pattern route (template and regular expression) in the order in which they were added to the router. Dispatch the first route that matches.


	If no pattern routes match, return a response with a 404 Not Found status. (Note: This is the default behavior. To configure a router to delegate to the next middleware when no route matches, call the router’s continueOnNotFound() method.)





Static vs. Prefix

Consider these routes:

$router
    ->register("GET", "/cats/", $static);
    ->register("GET", "/cats/*", $prefix);





The router will dispatch a request for /cats/ to $static because the static route /cats/ has priority over the prefix route /cats/*.

The router will dispatch a request to /cats/maine-coon to $prefix because it is not an exact match for /cats/, but it does begin with /cats/.



Prefix vs. Prefix

Given these routes:

$router
    ->register("GET", "/dogs/*", $short);
    ->register("GET", "/dogs/sporting/*", $long);





A request to /dogs/herding/australian-shepherd will be dispatched to $short because it matches /dogs/*, but does not match /dogs/sporting/*

A request to /dogs/sporing/flat-coated-retriever will be dispatched to $long because it matches both routes, but /dogs/sporting is longer.



Prefix vs. Pattern

Given these routes:

$router
    ->register("GET", "/dogs/*", $prefix);
    ->register("GET", "/dogs/{group}/{breed}", $pattern);





$pattern will never be dispatched because any route that matches /dogs/{group}/{breed} also matches /dogs/*, and prefix routes have priority over pattern routes.



Pattern vs. Pattern

When multiple pattern routes match a path, the first one that was added to the router will be the one dispatched. Be careful to add the specific routes before the general routes. For example, say you want to send traffic to two similar looking URIs to different handlers based whether the variables were supplied as numbers or letters—/dogs/102/132 should be dispatched to $numbers, while /dogs/herding/australian-shepherd should be dispatched to $letters.

This will work:

// Matches only when the variables are digits.
$router->register("GET", "~/dogs/([0-9]+)/([0-9]+)", $numbers);
// Matches variables with any unreserved characters.
$router->register("GET", "/dogs/{group}/{breed}", $letters);





This will NOT work:

// Matches variables with any unreserved characters.
$router->register("GET", "/dogs/{group}/{breed}", $letters);
// Matches only when the variables are digits.
$router->register("GET", "~/dogs/([0-9]+)/([0-9]+)", $numbers);





This is because /dogs/{group}/{breed} will match both /dogs/102/132 and /dogs/herding/australian-shepherd. If it is added to the router before the route for $numbers, it will be dispatched before the route for $numbers is ever evaluated.





Methods

When you register a route, you can provide a specific method, a list of methods, or a wildcard to indicate any method.


Registering by Method

Specify a specific handler for a path and method by including the method as the first parameter.

// Dispatch $dogCollectionReader for GET requests to /dogs/
$router->register("GET", "/dogs/", $dogCollectionReader);

// Dispatch $dogCollectionWriter for POST requests to /dogs/
$router->register("POST", "/dogs/", $dogCollectionWriter);







Registering by Method List

Specify the same handler for multiple methods for a given path by proving a comma-separated list of methods as the first parameter.

// Dispatch $catCollectionHandler for GET and POST requests to /cats/
$router->register("GET,POST", "/cats/", $catCollectionHandler);

// Dispatch $catItemReader for GET requests to /cats/12, /cats/12, etc.
$router->register("GET", "/cats/{id}", $catItemReader);

// Dispatch $catItemWriter for PUT, and DELETE requests to /cats/12, /cats/12, etc.
$router->register("PUT,DELETE", "/cats/{id}", $catItemWriter);







Registering by Wildcard

Specify a handler for all methods for a given path by proving a * wildcard.

// Dispatch $guineaPigHandler for all requests to /guinea-pigs/, regardless of method.
$router->register("*", "/guinea-pigs/", $guineaPigHandler);

// Use $hamstersHandler by default for requests to /hamsters/
$router->register("*", "/hamsters/", $hamstersHandler);

// Provide a specific handler for POST /hamsters/
$router->register("POST", "/hamsters/", $hamstersPostOnly);






Note

The wildcard * can be useful, but be aware that the associated middleware will need to manage HEAD and OPTIONS requests, whereas this is done automatically for non-wildcard routes.


  
    

    URI Templates
    

    
 
  

    
      
          
            
  
URI Templates

WellRESTed allows you to register handlers with a router using URI Templates, based on the URI Templates defined in RFC 6570 [https://tools.ietf.org/html/rfc6570]. These templates include variables (enclosed in curly braces) which are extracted and made available to the dispatched middleware.


Reading Variables


Basic Usage

Register a handler with a URI Template by providing a path that include at least one section enclosed in curly braces. The curly braces define variables for the template.

$router->register("GET", "/widgets/{id}", $widgetHandler);





The router will match requests for paths like /widgets/12 and /widgets/mega-widget and dispatch $widgetHandler with the extracted variables made available as request attributes.

To read a path variable, router inspects the request attribute named "id", since id is what appears inside curly braces in the URI template.

// For a request to /widgets/12
$id = $request->getAttribute("id");
// "12"

// For a request to /widgets/mega-widget
$id = $request->getAttribute("id");
// "mega-widget"






Note

Request attributes are a feature of the ServerRequestInterface provided by PSR-7 [https://www.php-fig.org/psr/psr-7/].


  
    

    URI Templates (Advanced)
    

    
 
  

    
      
          
            
  
URI Templates (Advanced)

In URI Templates, we looked at the most common ways to use URI Templates. Here, we’ll look at some of the extended syntaxes that URI Templates provide.


Path Components

To match a path component, include a slash / at the beginning of the variable expression. This instructs the template to match the variable if it:


	Begins with /


	Contains only unreserved and percent-encoded characters




You may also use the explode (*) modifier to match a variable number of path components and provide them as an array. When using the explode (*) modifier to match paths components, the / character serves as the delimiter instead of a comma.


Matching path components

	Template

	Path

	Match?

	Attributes





	{/path}

	/hello.html

	Yes

	
	path:

	"hello.html"








	{/path}

	/too/many/parts.jpg

	No

	


	{/one}{/two}{/three}

	/just/enough/parts.jpg

	Yes

	
	one:

	"just"



	two:

	"enough"



	three:

	"parts.jpg"








	{/path*}

	/any/number/of/parts.jpg

	Yes

	
	path:

	["any", "number", "of", "parts.jpg"]








	/image{/image*}.jpg

	/image/with/any/path.jpg

	Yes

	
	image:

	["with", "any", "path"]












Note

The template {/path} fails to match the path /too/many/parts.jpg. Although the path does begin with a slash, the subsequent slashes are reserved characters, and therefore the match fails. To match a variable number of path components, use the explode * modifier (e.g, {/paths*}), or use the reserved (+) operator (e.g., /{+paths}).


  
    

    Extending and Customizing
    

    
 
  

    
      
          
            
  
Extending and Customizing

WellRESTed is designed with customization in mind. This section describes some common scenarios for customization, starting with using a handler that implements a different interface.


Custom Handlers and Middleware

Imagine you found a handler class from a third party that does exactly what you need. The only problem is that it implements a different interface.

Here’s the interface for the third-party handler:

interface OtherHandlerInterface
{
    /**
     * @param ServerRequestInterface $request
     * @return ResponseInterface
     */
    public function run(ResponseInterface $response);
}






Wrapping

One solution is to wrap an instance of this handler inside of a Psr\Http\Server\RequestHandlerInterface instance.

/**
 * Wraps an instance of OtherHandlerInterface
 */
class OtherHandlerWrapper implements RequestHandlerInterface
{
    private $handler;

    public function __construct(OtherHandlerInterface $handler)
    {
        $this->handler = $handler;
    }

    public function handle(ServerRequestInterface $request): ResponseInterface
    {
        return $this->handler->run($request);
    }
}







Custom Dispatcher

Wrapping works well when you have one or two handlers implementing a third-party interface. If you want to integrate a lot of classes that implement a given third-party interface, you’re might consider customizing the dispatcher.

The dispatcher is an instance that unpacks your handlers and middleware and sends the request and response through it. A default dispatcher is created for you when you use your WellRESTed\Server.

If you need the ability to dispatch other types of middleware, you can create your own by implementing WellRESTed\Dispatching\DispatcherInterface. The easiest way to do this is to subclass WellRESTed\Dispatching\Dispatcher. Here’s an example that extends Dispatcher and adds support for OtherHandlerInterface:

/**
 * Dispatcher with support for OtherHandlerInterface
 */
class CustomDispatcher extends \WellRESTed\Dispatching\Dispatcher
{
    public function dispatch(
        $dispatchable,
        ServerRequestInterface $request,
        ResponseInterface $response,
        $next
    ) {
        try {
            // Use the dispatch method in the parent class first.
            $response = parent::dispatch($dispatchable, $request, $response, $next);
        } catch (\WellRESTed\Dispatching\DispatchException $e) {
            // If there's a problem, check if the handler or middleware
            // (the "dispatchable") implements OtherHandlerInterface.
            // Dispatch it if it does.
            if ($dispatchable instanceof OtherHandlerInterface) {
                $response = $dispatchable->run($request);
            } else {
                // Otherwise, re-throw the exception.
                throw $e;
            }
        }
        return $response;
    }
}





To use this dispatcher, create an instance implementing WellRESTed\Dispatching\DispatcherInterface and pass it to the server’s setDispatcher method.

$server = new WellRESTed\Server();
$server->setDispatcher(new MyApi\CustomDispatcher());






Warning

When you supply a custom Dispatcher, be sure to call Server::setDispatcher before you create any routers with Server::createRouter to allow the Server to pass you customer Dispatcher on to the newly created Router.


  
    

    Dependency Injection
    

    
 
  

    
      
          
            
  
Dependency Injection

WellRESTed strives to play nicely with other code and not force developers into using any specific libraries or frameworks. As such, WellRESTed does not provide a dependency injection container, nor does it require you to use a specific container (or any).

This section describes the recommended way of using WellRESTed with Pimple [https://pimple.symfony.com/], a common dependency injection container for PHP.

Imaging we have a FooHandler that depends on a BarInterface, and BazInterface. Our handler looks something like this:

class FooHandler implements RequestHandlerInterface
{
    private $bar;
    private $baz;

    public function __construct(BarInterface $bar, BazInterface $baz)
    {
        $this->bar = $bar;
        $this->baz = $baz;
    }

    public function handle(ServerRequestInterface $request): ResponseInterface
    {
        // Do something with the bar and baz and return a response...
        // ...
    }
}





We can register the handler and these dependencies in a Pimple [https://pimple.symfony.com/] service provider.

class MyServiceProvider implements ServiceProviderInterface
{
    public function register(Container $c)
    {
        // Register the Bar and Baz as services.
        $c['bar'] = function ($c) {
            return new Bar();
        };
        $c['baz'] = function ($c) {
            return new Baz();
        };

        // Register the Handler as a protected function. When you use
        // protect, Pimple returns the function itself instead of the return
        // value of the function.
        $c['fooHandler'] = $c->protect(function () use ($c) {
            return new FooHandler($c['bar'], $c['baz']);
        });
    }
}





To register this handler with a router, we can pass the service:

$router->register('GET', '/foo', $c['fooHandler']);





By “protecting” the fooHandler service, we are delaying the instantiation of the FooHandler, the Bar, and the Baz until the handler needs to be dispatched. This works because we’re not passing instance of FooHandler when we register this with a router, we’re passing a function to it that does the instantiation on demand.




          

      

      

    

  

  
    

    Additional Components
    

    
 
  

    
      
          
            
  
Additional Components

The core WellRESTed library is designed to be very small and limited in scope. It should do only what’s needed, and no more. One of WellRESTed’s main goals is to stay small, and not force anything on consumers.

That being said, there are a number or situations that come up that warrant solutions. For that, WellRESTed also provides a (growing) number of companion packages that you may find useful, depending on the project.


	HTTP Exceptions [https://github.com/wellrestedphp/http-exceptions]

	A collection of Exception classes that correspond to common HTTP error status codes.



	Error Handling [https://github.com/wellrestedphp/error-handling]

	Classes to facilitate error handling including



	Test Components [https://github.com/wellrestedphp/test]

	Test cases and doubles for use with WellRESTed





Or, see WellRESTed [https://github.com/wellrestedphp] on GitHub.




          

      

      

    

  

  
    

    Web Server Configuration
    

    
 
  

    
      
          
            
  
Web Server Configuration

You will typically want to have all traffic on your site directed to a single script that creates a WellRESTed\Server and calls respond. Here are basic setups for doing this in Nginx and Apache.


Nginx

server {

    listen 80;
    server_name your.hostname.here;
    root /your/sites/document/root;
    index index.php index.html;
    charset utf-8;

    # Attempt to serve actual files first.
    # If no file exists, send to /index.php
    location / {
        try_files $uri $uri/ /index.php?$args;
    }

    location ~ \.php$ {
        try_files $uri =404;
        fastcgi_pass unix:/var/run/php5-fpm.sock;
        fastcgi_index index.php;
        include fastcgi_params;
    }

}







Apache

RewriteEngine on
RewriteBase /

# Send all requests to non-regular files and directories to index.php
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^.+$ index.php [L,QSA]









          

      

      

    

  

  
    
    Index
    

    
 
  

    
      
          
            

Index



 




          

      

      

    

  
_static/ajax-loader.gif





_static/comment-close.png





_static/comment.png





_static/comment-bright.png





_static/down-pressed.png





_static/down.png





nav.xhtml

    
      Table of Contents


      
        		
          WellRESTed
        


        		
          Overview
          
            		
              Installation
            


            		
              Requirements
            


            		
              License
            


          


        


        		
          Getting Started
          
            		
              Hello, World!
            


            		
              Routing by Path
            


            		
              Reading Path Variables
            


            		
              Middleware
            


          


        


        		
          Messages and PSR-7
          
            		
              Requests
              
                		
                  Headers
                


                		
                  Body
                


                		
                  Parameters
                


                		
                  Attributes
                


              


            


            		
              Responses
              
                		
                  Status
                


                		
                  Headers
                


                		
                  Body
                


              


            


          


        


        		
          Handlers and Middleware
          
            		
              Defining Handlers and Middleware
              
                		
                  PSR-15 Interfaces
                


                		
                  Legacy Middleware Interface
                


                		
                  Callables
                


              


            


            		
              Using Handlers and Middleware
              
                		
                  Factory Functions
                


                		
                  Instance
                


                		
                  Fully Qualified Class Name (FQCN)
                


                		
                  Array
                


              


            


          


        


        		
          Router
          
            		
              Basic Usage
            


            		
              Paths
              
                		
                  Static Routes
                


                		
                  Prefix Routes
                


                		
                  Template Routes
                


                		
                  Regex Routes
                


                		
                  Route Priority
                


              


            


            		
              Methods
              
                		
                  Registering by Method
                


                		
                  Registering by Method List
                


                		
                  Registering by Wildcard
                


                		
                  HEAD
                


                		
                  OPTIONS, 405 Responses, and Allow Headers
                


              


            


            		
              Error Responses
            


            		
              Router-specific Middleware
            


            		
              Nested Routers
            


          


        


        		
          URI Templates
          
            		
              Reading Variables
              
                		
                  Basic Usage
                


                		
                  Multiple Variables
                


                		
                  Arrays
                


              


            


            		
              Matching Characters
              
                		
                  Unreserved Characters
                


                		
                